

# Target-Pathogen: a structural bioinformatic approach to prioritize drug targets in pathogens

#### Darío Fernández Do Porto Argentine Consortia of Bioinformatics (BIA) Science School

University of Buenos Aires





## Are pathogens fighting back?

Antimicrobial resistance (AMR) threatens the effective prevention and treatment of an ever-increasing range of infections caused by a bacteria, parasites, viruses and fungi.

The cost of health care for patients with resistant infections is
higher than care for patients with non-resistant infections due to longer duration of illness, additional tests and use of more expensive drugs.

Globally, 480 000 people develop multi-drug resistant TB each year, and drug resistance is starting to complicate the fight against HIV and malaria, as well.







## New Technologies and new paradigms



### Standard Drug discovery pipeline



### target.sbg.qb.fcen.uba.ar

🔪 🖹 Genomes

🗮 Methodology 🛛 🕐 User Guide

TARGET

PATHOGEN

Tutorial 🚯 About

Target-Pathogen database is a bioinformatic approach to prioritize drug targets in pathogens. Available genomic data for pathogens has created new opportunities for drug discovery and development, including new species, resistant and multiresistant ones. However, this data must be cohesively integrated to be fully exploited and be easy to interrogate. Target-Pathogen has been designed and developed as an online resource to allow genome wide based data consolidation from diverse sources focusing on structural druggability, essentiality and metabolic role of proteins. By allowing the integration and weighting of this information, this bioinformatic tool aims to facilitate the identification and prioritization of candidate drug targets for pathogens. With the structurome and drugome information Target-Pathogen is a unique resource to analyze whole genomes of relevants pathogens.

Select Your Genome

### Whole genome analysis and structurome prediction

#### WG anotation of protein properties

• Localization, Gene Ontology, KEGG, Relevant Residues, PFAM, EC Enzyme, etc...



#### WG protein structure prediction





Structure With Quality Assesment for drug development

## How can we select a protein that binds a Drug like compound?

#### Find pockets?



To identify a POCKET! Fpocket: We implemented a pocket detector program We estimated pocket properties and Determine druggability

#### **Concept of Druggability**





## A pocket inside a protein

- Druggability Score : 0.788
- \* Number of Alpha Spheres :
- \* Total SASA :
- \* Polar SASA :
- \* Apolar SASA :
- \* Volume :
- Mean local hydrophobic density :
- \* Mean alpha sphere radius :
- \* Mean alp. sph. solvent access : 0.479
- Apolar alpha sphere proportion : 0.660
- \* Hydrophobicity score:
- Aminoa Acid Composition
- Distances between Aminocids





#### Relevant Information related to the protein pockets

844.370

322.358

29.833

### Druggability in patogens



### How to select an attractive target from the metabolic point of view









## Discarding side effects





#### **Posible Interferencia**











Genomes / Mycobacterium tuberculosis H37Rv

JOIOWSE THE NEW HELP

Overview Data Priorize Targets Prioritize Pathways



| 2,195,000           | 2,200,000                    | 2,205,000             | 2,210,000                     | 2,215,000                         |
|---------------------|------------------------------|-----------------------|-------------------------------|-----------------------------------|
| Com in to           | o see sequence Zoom in to    | o see sequence Zoom - | in to see sequence Zoom in to | o see sequence Zoom in to see seq |
| Genes mazE5 Rv1945  | * Rv1947 Rv1950c vapC14      | nigA parE1 vapC35     | yrbE3A + mce3A + mce3         | ← lprM ← Rv1972 Rv19              |
| 1939 Rv1941 Rv1944c | LppG Rv1948c Rv1951c Rv1954c | Rv1957 parD1 vapB35   | yrbE3B → mce3B →              | mce3D → mce3F → Rv1973            |
| mazF5               | vapB14 higB                  | Rv1958c Rv1961 mce3R  |                               | ŧ                                 |
|                     |                              |                       |                               |                                   |
|                     |                              |                       |                               |                                   |
|                     |                              |                       |                               |                                   |
|                     |                              |                       |                               |                                   |

|  |          |        |         |     | - <b>-</b> - |    |        |        |        |       |        |      |     |          |        |       |    |     |     |       |     |   |       |         |    |     |       |        |       |       |    |         |    |     |    |
|--|----------|--------|---------|-----|--------------|----|--------|--------|--------|-------|--------|------|-----|----------|--------|-------|----|-----|-----|-------|-----|---|-------|---------|----|-----|-------|--------|-------|-------|----|---------|----|-----|----|
|  | 0        |        | 500,000 | )   |              |    | 1,000, | 000    |        | 1,    | ,500,0 | 000  |     | 2        | 2,000, | 000   |    |     | 2,5 | 00,00 | 0   |   |       | 3,000,0 | 00 |     | 3,    | 500,00 | 0     |       | 4  | 4,000,0 | 00 |     |    |
|  |          |        |         |     |              |    |        | 2.3:22 | 05221. | .2205 | 285 (6 | 6 b) | Go  | <u> </u> |        |       |    |     |     |       |     |   |       |         |    |     |       |        |       |       |    |         |    |     |    |
|  | 2,2      | 05,225 |         |     |              |    |        |        |        |       |        |      |     |          | 2,205  | ,250  |    |     |     |       |     |   |       |         |    |     |       |        | 2,20  | 5,275 |    |         |    |     | _  |
|  | Sequence | ]      | P       | R   |              | S  |        | E      | L      |       | Α      | *    |     | Р        |        | А     |    | Р   |     | R     | F   |   | Р     |         | G  | F   | 2     | S      | R     |       | A  |         | S  |     | Т  |
|  | S        | Г      | S       | ;   | I            |    | R      |        | I      | S     |        | L    | T   | ·        | S      |       | Α  |     | Е   |       | v   |   | S .   | R       |    | *   | I     |        | Т     |       | R  | 1       |    | Y   |    |
|  | F        | D      | L       |     | D            | I  | P      | N      |        | *     | L      |      | D   |          | Q      | ] ]   | R  | I   | R   | G     |     | F |       | Q       |    | '   | D     | H      | H     | A     |    | L       |    | V   | P  |
|  | TTCG     | ACO    | с Т С   | G   | A T          | CC | GG     | A A    | T T    | A G   | CI     | TG   | A C | C        | A G    | C     | GC | C   | G A | GG    | ТТ  | T | C   C | A G     | GT | A C | G A T | C 7    | A C G | C     | GC | T A     | G  | ΤA  | CC |
|  | A A G C  | TGO    | G A G   | ; C | TA           | GO | G C    | TT     | A A    | ТС    | G A    | AC   | TO  | G        | ТС     | G     | CG | G ( | C T | CC    | A A | A | GG    | TC      | CA | TC  | C T A | G      | GC    | G     | CG | A T     | С  | A T | GG |
|  | E        | V      | Е       |     | Ι            | F  | R      | I      |        | L     | K      | (    | V   |          | L      | j     | A  | 5   | S   | Т     |     | Е |       | L       | Y  |     | I     | 1      | /     | R     |    | *       |    | Y   | R  |
|  | R        | G      | R       | 2   | D            | ·  | S      |        | N      | A     |        | Q    | 6   | ;        | A      | · · · | G  |     | L   |       | N   | ( | 3     | P       |    | L   | D     |        | R     |       | A  | 1       |    | V   |    |
|  | N S      | ]      | R       | S   |              | G  |        | F      | *      |       | S      | S    |     | W        |        | R     |    | R   |     | P     | K   |   | W     |         | Т  | S   | 5     | *      | A     |       | S  |         | Т  |     | G  |
|  |          |        |         |     |              |    |        | _      |        |       |        |      |     |          |        | 1     |    |     |     |       |     |   |       |         |    |     |       |        |       | 1     |    |         |    |     |    |



| Search Gene Product By |   |
|------------------------|---|
| Keyword                |   |
|                        | Q |
| Gene                   |   |
|                        | Q |
| GO Term Q              |   |

#### H37Rv Pathways Q



#### Statistics

| Proteins                           | 4023 |
|------------------------------------|------|
| ? Polypeptide domain               | 3323 |
| Go                                 | 3184 |
| Ec                                 | 1067 |
| Polypeptide structural motif       | 534  |
| ? Transmembrane polypeptide region | 360  |
| Signal peptide                     | 133  |
|                                    |      |

Showing 1 to 7 of 7 entries

## OVERVIEW

Genome Browser. EC and GO searches

#### Protein structure



#### Filter

#### Removes the proteins that do not fullfill ALL the conditions

| Notadata Add age P                   |                                                                                                     |                                                         |                                       |           |          |
|--------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|-----------|----------|
| Metadata Add New Pr                  | operties                                                                                            |                                                         |                                       |           |          |
| Name De                              | scription                                                                                           |                                                         |                                       | Operation | Value    |
| X druggability Dr<br>Dr<br>dr<br>(hr | uggability score from th<br>uggable: druggability ><br>uggability > 0.7.<br>:tps://www.ncbi.nlm.nil | ne most druggab<br>0.5 / Highly Drug<br>h.gov/pmc/artic | le pocket.<br>ggable<br>les/PMC401467 | > ▼       | 0.5      |
| X essentiality Cri<br>(ht            | tical for the organism s<br>tps://www.ncbi.nlm.nil                                                  | urvival<br>h.gov/pubmed/2                               | 26791267                              | equal     | ▼ true ▼ |
| X human_offtarget Ma<br>pr           | ix identity in a simple b<br>otein                                                                  | last alignment w                                        | rith a human                          | < 🔻       | 0.4      |

TARGET

Filters

PATHOGEN



|                  | 8400 | Number of ORFs                                                                                                                     |
|------------------|------|------------------------------------------------------------------------------------------------------------------------------------|
|                  | 5515 | Highly druggable proteins (HD)                                                                                                     |
|                  | 843  | HD with a residue inside the druggable pocket<br>reported in the Catalytic Site Atlas database<br>(CSA)                            |
|                  | 629  | HD, CSA and without homology with any human protein (off-target)                                                                   |
|                  | 381  | HD, CSA, off-target and essential proteins                                                                                         |
|                  | 105  | HD, CSA, off-target and essential proteins with kinase activity                                                                    |
|                  | 65   | HD, CSA, off-target and essential proteins with serine/threonine kinase activity                                                   |
|                  | 26   | HD, CSA, off-target and essential proteins with serine/threonine kinase activity and involved in intracellular signal transduction |
| Leishmania major |      |                                                                                                                                    |

### Latent tuberculosis



- M. tuberculosis has the remarkable capacity to survive years within the hostile environment of the macrophage.
- Within the macrophage, tuberculosis bacilli is exposed to RNOS stress.
- There is not treatment for latent tuberculosis.

## How to kill latent M. tuberculosis

- Hipótesis:
  - if we know which proteins are targeted by RNOS and kill M. tuberculosis bacilli, we might be able to inhibit them with drugs, resulting in a synergistic bactericidal effect



What features makes a protein a good target for laten tuberculosis drug selection?

Druggabilty No side effects

Essenciality

**Biologically Relevant** 

Important in the metabolic context



# Scoring function

 $SF = \frac{H+S+R+I}{4} + \frac{Ch+Cy}{2}$ 

#### Score

Sorts all / the filtered proteins by calculating a numeric value o score. Score formula is a weighted linear sum of the protein properties.

|   | Activity Biologic                                 | al Process                                        | <b>Pathways</b>                 | Structure  | Pocket                      | Metadata    | Add new Proper              | rties |
|---|---------------------------------------------------|---------------------------------------------------|---------------------------------|------------|-----------------------------|-------------|-----------------------------|-------|
|   | Name                                              | Description                                       |                                 |            |                             | Coefficient | Norm.                       |       |
| Х | overexpression<br>stress<br>Show distribution     | Overexpressed in model<br>(https://www.ncbi.nlm.n |                                 | 0.25       | if is<br>equal to<br>true ▼ | 0.13        |                             |       |
| Х | overexpression<br>starvation<br>Show distribution | Overexpressed in model<br>(https://www.ncbi.nlm.n | of starvation<br>ih.gov/pubmed/ | /26791267) |                             | 0.25        | if is<br>equal to<br>true ▼ | 0.13  |
| Х | overexpression<br>infection<br>Show distribution  | Overexpressed in model<br>(https://www.ncbi.nlm.n | of infection<br>ih.gov/pubmed/  | /26791267) |                             | 0.25        | if is<br>equal to<br>true ▼ | 0.13  |

#### Newly and Revalidated Mtb targets

Newly and revalidated *Mtb* targets found using structural druggability, metabolic importance analysis and expression data in infection mimicking conditions. Revalidated targets are taken from [25].

| Protein name                                                                | Rv      | Status      | Druggability | Pathway (importance)                                                                                                                      | Profile expression |
|-----------------------------------------------------------------------------|---------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Inositol-3-phosphate synthase                                               | Rv0046c | New target  | 0.719        | Myo-inositol biosynthesis (0.3871) L-1-phosphatidyl-<br>inositol biosynthesis (Mycobacteria) (0.6063).<br>mycothiol biosynthesis (0.5370) | Str, Hyp, Sta      |
| 3-phosphoshikimate 1-carboxyvinyltransferase                                | Rv3227  | New target  | 724          | Chorismate biosynthesis from 3-dehydroquinate (0.4828)                                                                                    | Str                |
| O-acetylhomoserine aminocarboxypropyltransferase                            | Rv3340  | New target  | 535          | Homocysteine biosynthesis (0.4681)                                                                                                        | Hyp, Sta, Inf      |
| 3-oxoacyl-[acyl-carrier-protein] synthase 2                                 | Rv2246  | New target  | 709          | Mycolate biosynthesis (0.4517) fatty acid biosynthesis<br>initiation II (0.3883) 8-amino-7-oxononanoate<br>biosynthesis I (0.3765)        | Str, Hyp           |
| Octanoyltransferase                                                         | Rv2217  | New target  | 703          | Lipoate biosynthesis and incorporation I (0.4529)                                                                                         | Sta                |
| Bifunctional protein GlmU                                                   | Rv1018c | New target  | 911          | UDP-N-acetyl-D-glucosamine biosynthesis I (0.4523)                                                                                        | Str, Hyp, Inf      |
| Rv1465                                                                      | Rv1465  | New target  | 926          | [2Fe–2S] iron-sulfur cluster biosynthesis                                                                                                 | Str                |
| 1D-myo-inositol 2-acetamido-2-deoxy-alpha-D-<br>glucopyranoside deacetylase | RV1170  | Revalidated | 781          | Mycothiol biosynthesis (0.5370)                                                                                                           | Str                |
| Sulfate adenylyltransferase subunit 2                                       | Rv1285  | Revalidated | 891          | Selenate reduction (0.4579) sulfate activation for sulfonation (0.4326)                                                                   | Str, Hyp, Sta      |
| dTDP-glucose 4,6-dehydratase                                                | Rv3464  | Revalidated | 676          | dTDP-1-rhamnose biosynthesis I (0.4459)                                                                                                   | Str                |
| Enoyl-[acyl-carrier-protein] reductase [NADH]                               | Rv1484  | Revalidated | 919          | 8-amino-7-oxononanoate biosynthesis I (0.3765)<br>stearate biosynthesis II (bacteria and plants) (0.3700)                                 |                    |
| 3-methyl-2-oxobutanoate hydroxymethyltransferase                            | Rv2225  | Revalidated | 937          | Phosphopantothenate biosynthesis I (0.4351)                                                                                               | Str, Hyp, Inf      |
| Mycocyclosin synthase                                                       | Rv2276  | Revalidated | 887          | Mycocyclosin biosynthesis (0.4435)                                                                                                        | Нур                |



## Prioritisize pathways

#### Score

Sorts all / the filtered proteins by calculating a numeric value o score. Score formula is a weighted linear sum of the protein properties.

|                                                                                        | ¢<br>Activity                   | Biological Process                                                            | O<br>Localization | Pathways | Structure | Pocket     | Netadata |       |  |  |  |  |
|----------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------|-------------------|----------|-----------|------------|----------|-------|--|--|--|--|
| A                                                                                      | dd new Properti                 | es                                                                            |                   |          |           |            |          | N     |  |  |  |  |
|                                                                                        | Name                            | Description                                                                   |                   |          | C         | oefficient |          | Norm. |  |  |  |  |
| Х                                                                                      | centrality                      | Shortest-path betweenness centrality (normalized) for a 1 0.5 reaction graph. |                   |          |           |            |          |       |  |  |  |  |
| X chokepoint The protein catalyzes a chokepoint reaction 1 if is equal to 0.<br>true • |                                 |                                                                               |                   |          |           |            |          |       |  |  |  |  |
| Sc                                                                                     | Score = centrality + chokepoint |                                                                               |                   |          |           |            |          |       |  |  |  |  |

#### SF=((Emgh+Edeg)/2+Cv+Cy +chk)/4 +Pb



#### Target-Pathogen: a structural bioinformatic approach to prioritize drug targets in pathogens

Ezequiel J. Sosa<sup>1,2</sup>, Germán Burguener<sup>1,2</sup>, Esteban Lanzarotti<sup>1,2</sup>, Lucas Defelipe<sup>1,2</sup>, Leandro Radusky<sup>1,2</sup>, Agustín M. Pardo<sup>3</sup>, Marcelo Marti<sup>1,2,3</sup>, Adrián G. Turjanski<sup>1,2,3,\*</sup> and Darío Fernández Do Porto<sup>1,2,\*</sup>

<sup>1</sup>IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina, <sup>2</sup>Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina and <sup>3</sup>Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina

Received August 14, 2017; Revised September 29, 2017; Editorial Decision October 12, 2017; Accepted October 16, 2017



### Different Pathogens

- Mycobacterium Tuberculosis (Marti, Piuri, UBA): Database 2014, Tuberculosis 2015
- Corynebacterium paratuberculosis (Acevedo, B. Horizonte): BMC Genomics, 2014; BMC Genomics, 2015, Frontiers in Genomics 2018
- \* Klebsiella pneumoniae (Nicolas, Rio de Janeiro): Scientific Reports 2018
- Leishmania Major (Ramos, UFB, Bahia)
- ✤ Bartonella bacilliformis (Abraham Espinosa, University of São Paulo )
- Trypanozoma Cruzi (Pablo Smircich, Montevideo)
- Staphylococcus aeurus (Dr.Bocco, Universidad de Córdoba)



## Plataforma de Bioinformática Argentina

#### A Turjanski M Martí

**Microorganisms Genomics** Ing. Ezequiel Sosa Dr. Germán Burguener Lic. Agustín Pardo Andrés Fernández Benevento **Federico Serral** 

**Human Genomics** Lic. Jonathan Zayat Dr. Sergio Nemirovsky Dr. Juan Pablo Alracon Sebastian Vishnopolska Lic. Geronimo Dubra



AGENCIA









# Argentina dariofd@gmail.com





